M1. (a) (i) counts / 12

$$
\begin{aligned}
& \times 120 \times 80 / \times 9600 \\
& \text { or } \times \text { area of field }
\end{aligned}
$$

(ii) (more) quadrats / repeats
placed randomly
ignore method of achieving randomness
(b) (i) any three from:

- temperature / warmth / heat
- water / rain
- minerals / ions / salts (in soil)
allow nutrients / fertiliser / soil fertility
ignore food
- pH (of soil)
- trampling
- herbivores
ignore predators
- competition (with other species)
- pollution qualified e.g. SO_{2} / herbicide
- wind (related to seed dispersal).
ignore space / oxygen / CO_{2} / soil unqualified
(ii) light needed for photosynthesis
for making food / sugar / etc.
effect on buttercup distribution eg more plants in sunny areas / fewer plants in shady areas
(c) (i) fertiliser / ions / salts cause growth of algae / plants
(algae / plants) block light
(low light) causes algae / plants to die
microorganisms / bacteria feed on / break down / cause decay of organic matter / of dead plants
do not allow germs / viruses
(aerobic) respiration (by microbes) uses O_{2} do not allow anaerobic
(ii) sewage / toxic chemicals / correct named example eg metals / bleach / disinfectant / detergent etc
allow suitable named examples eg metals such as Pb / Zn / $\mathrm{Cr} /$ oil / SO_{2} / acid rain / pesticides / litter
ignore chemicals unqualified
ignore waste unqualified
ignore human waste / domestic waste / industrial waste unqualified
(d) (i) 2
(ii) more food
allow other sensible suggestion eg more species colonise from tributary streams after forest
(iii) number of stonefly species decreases (from \mathbf{A} to \mathbf{B} / \mathbf{B} to \mathbf{C} / \mathbf{A} to \mathbf{C}) as more pollution enters river / less oxygen
allow fewer species in more polluted water ignore none are found at site C

M2. (a) (i) chloroplast
(ii) cell wall
(b) (i) osmosis
accept diffusion
(ii) cell wall (prevents bursting)
(c) (i) carbon dioxide \quad allow correct formula
glucose
allow sugar / starch
(ii) any two from:

- light sensitive spot detects light
- tells flagellum to move towards light
- more light $=$ more photosynthesis
(d) (cell has) larger SA:volume ratio
short (diffusion) distance
(diffusion) via cell membrane is sufficient / good enough or
flow of water maintains concentration gradient

M3. (a) (i) 10
(b) SO_{2} decreases with distance from centre
accept converse
Ignore pollution
high SO_{2} reduces survival or kills lichen accept converse
(c) (i) any three from:

- (line) transect
- quadrat / reference to specific area
- count number of lichens or coverage on trees
- at regular intervals / set distances
(ii) (more) Xanthoria nearest road allow 'nitrogen-loving' for Xanthoria
(more) Usnea further from the road allow 'nitrogen-sensitive’ for Usnea
because most nitrogen oxide from vehicles (near road)
or
because nitrogen oxide levels will be falling / less further away (from road) accept converse

M4. (a) gets more light (near surface)
allow warmer (near surface)
allow bladders contain (more) carbon dioxide

M5. (a) any three from:

- parts of organisms have not decayed accept in amber/resin allow bones are preserved
- conditions needed for decay are absent accept appropriate examples, eg acidic in bogs / lack of oxygen
- parts of the organism are replaced by other materials as they decay accept mineralised
- or other preserved traces of organisms, eg footprints, burrows and rootlet traces
allow imprint or marking of organism
(b) (i) teeth for biting (prey)
must give structure + explanation
claws to grip (prey)
accept sensible uses
wing / tail for flight to find (prey)
(ii) any two from:
- new predators
- new diseases
- better competitors
- catastrophe eg volcanic eruption, meteor
- changes to environment over geological time accept climate change
allow change in weather
- prey dies out or lack of food
allow hunted to extinction

